↳ Prolog
↳ PrologToPiTRSProof
convert_in(.(s(Y), XS), B, s(X)) → U3(Y, XS, B, X, convert_in(.(Y, XS), B, X))
convert_in(.(0, XS), B, X) → U1(XS, B, X, convert_in(XS, B, Y))
convert_in([], B, 0) → convert_out([], B, 0)
U1(XS, B, X, convert_out(XS, B, Y)) → U2(XS, B, X, times_in(Y, B, X))
times_in(s(X), Y, Z) → U5(X, Y, Z, times_in(X, Y, U))
times_in(0, Y, 0) → times_out(0, Y, 0)
U5(X, Y, Z, times_out(X, Y, U)) → U6(X, Y, Z, plus_in(Y, U, Z))
plus_in(s(X), Y, s(Z)) → U4(X, Y, Z, plus_in(X, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U4(X, Y, Z, plus_out(X, Y, Z)) → plus_out(s(X), Y, s(Z))
U6(X, Y, Z, plus_out(Y, U, Z)) → times_out(s(X), Y, Z)
U2(XS, B, X, times_out(Y, B, X)) → convert_out(.(0, XS), B, X)
U3(Y, XS, B, X, convert_out(.(Y, XS), B, X)) → convert_out(.(s(Y), XS), B, s(X))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
convert_in(.(s(Y), XS), B, s(X)) → U3(Y, XS, B, X, convert_in(.(Y, XS), B, X))
convert_in(.(0, XS), B, X) → U1(XS, B, X, convert_in(XS, B, Y))
convert_in([], B, 0) → convert_out([], B, 0)
U1(XS, B, X, convert_out(XS, B, Y)) → U2(XS, B, X, times_in(Y, B, X))
times_in(s(X), Y, Z) → U5(X, Y, Z, times_in(X, Y, U))
times_in(0, Y, 0) → times_out(0, Y, 0)
U5(X, Y, Z, times_out(X, Y, U)) → U6(X, Y, Z, plus_in(Y, U, Z))
plus_in(s(X), Y, s(Z)) → U4(X, Y, Z, plus_in(X, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U4(X, Y, Z, plus_out(X, Y, Z)) → plus_out(s(X), Y, s(Z))
U6(X, Y, Z, plus_out(Y, U, Z)) → times_out(s(X), Y, Z)
U2(XS, B, X, times_out(Y, B, X)) → convert_out(.(0, XS), B, X)
U3(Y, XS, B, X, convert_out(.(Y, XS), B, X)) → convert_out(.(s(Y), XS), B, s(X))
CONVERT_IN(.(s(Y), XS), B, s(X)) → U31(Y, XS, B, X, convert_in(.(Y, XS), B, X))
CONVERT_IN(.(s(Y), XS), B, s(X)) → CONVERT_IN(.(Y, XS), B, X)
CONVERT_IN(.(0, XS), B, X) → U11(XS, B, X, convert_in(XS, B, Y))
CONVERT_IN(.(0, XS), B, X) → CONVERT_IN(XS, B, Y)
U11(XS, B, X, convert_out(XS, B, Y)) → U21(XS, B, X, times_in(Y, B, X))
U11(XS, B, X, convert_out(XS, B, Y)) → TIMES_IN(Y, B, X)
TIMES_IN(s(X), Y, Z) → U51(X, Y, Z, times_in(X, Y, U))
TIMES_IN(s(X), Y, Z) → TIMES_IN(X, Y, U)
U51(X, Y, Z, times_out(X, Y, U)) → U61(X, Y, Z, plus_in(Y, U, Z))
U51(X, Y, Z, times_out(X, Y, U)) → PLUS_IN(Y, U, Z)
PLUS_IN(s(X), Y, s(Z)) → U41(X, Y, Z, plus_in(X, Y, Z))
PLUS_IN(s(X), Y, s(Z)) → PLUS_IN(X, Y, Z)
convert_in(.(s(Y), XS), B, s(X)) → U3(Y, XS, B, X, convert_in(.(Y, XS), B, X))
convert_in(.(0, XS), B, X) → U1(XS, B, X, convert_in(XS, B, Y))
convert_in([], B, 0) → convert_out([], B, 0)
U1(XS, B, X, convert_out(XS, B, Y)) → U2(XS, B, X, times_in(Y, B, X))
times_in(s(X), Y, Z) → U5(X, Y, Z, times_in(X, Y, U))
times_in(0, Y, 0) → times_out(0, Y, 0)
U5(X, Y, Z, times_out(X, Y, U)) → U6(X, Y, Z, plus_in(Y, U, Z))
plus_in(s(X), Y, s(Z)) → U4(X, Y, Z, plus_in(X, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U4(X, Y, Z, plus_out(X, Y, Z)) → plus_out(s(X), Y, s(Z))
U6(X, Y, Z, plus_out(Y, U, Z)) → times_out(s(X), Y, Z)
U2(XS, B, X, times_out(Y, B, X)) → convert_out(.(0, XS), B, X)
U3(Y, XS, B, X, convert_out(.(Y, XS), B, X)) → convert_out(.(s(Y), XS), B, s(X))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
CONVERT_IN(.(s(Y), XS), B, s(X)) → U31(Y, XS, B, X, convert_in(.(Y, XS), B, X))
CONVERT_IN(.(s(Y), XS), B, s(X)) → CONVERT_IN(.(Y, XS), B, X)
CONVERT_IN(.(0, XS), B, X) → U11(XS, B, X, convert_in(XS, B, Y))
CONVERT_IN(.(0, XS), B, X) → CONVERT_IN(XS, B, Y)
U11(XS, B, X, convert_out(XS, B, Y)) → U21(XS, B, X, times_in(Y, B, X))
U11(XS, B, X, convert_out(XS, B, Y)) → TIMES_IN(Y, B, X)
TIMES_IN(s(X), Y, Z) → U51(X, Y, Z, times_in(X, Y, U))
TIMES_IN(s(X), Y, Z) → TIMES_IN(X, Y, U)
U51(X, Y, Z, times_out(X, Y, U)) → U61(X, Y, Z, plus_in(Y, U, Z))
U51(X, Y, Z, times_out(X, Y, U)) → PLUS_IN(Y, U, Z)
PLUS_IN(s(X), Y, s(Z)) → U41(X, Y, Z, plus_in(X, Y, Z))
PLUS_IN(s(X), Y, s(Z)) → PLUS_IN(X, Y, Z)
convert_in(.(s(Y), XS), B, s(X)) → U3(Y, XS, B, X, convert_in(.(Y, XS), B, X))
convert_in(.(0, XS), B, X) → U1(XS, B, X, convert_in(XS, B, Y))
convert_in([], B, 0) → convert_out([], B, 0)
U1(XS, B, X, convert_out(XS, B, Y)) → U2(XS, B, X, times_in(Y, B, X))
times_in(s(X), Y, Z) → U5(X, Y, Z, times_in(X, Y, U))
times_in(0, Y, 0) → times_out(0, Y, 0)
U5(X, Y, Z, times_out(X, Y, U)) → U6(X, Y, Z, plus_in(Y, U, Z))
plus_in(s(X), Y, s(Z)) → U4(X, Y, Z, plus_in(X, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U4(X, Y, Z, plus_out(X, Y, Z)) → plus_out(s(X), Y, s(Z))
U6(X, Y, Z, plus_out(Y, U, Z)) → times_out(s(X), Y, Z)
U2(XS, B, X, times_out(Y, B, X)) → convert_out(.(0, XS), B, X)
U3(Y, XS, B, X, convert_out(.(Y, XS), B, X)) → convert_out(.(s(Y), XS), B, s(X))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
PLUS_IN(s(X), Y, s(Z)) → PLUS_IN(X, Y, Z)
convert_in(.(s(Y), XS), B, s(X)) → U3(Y, XS, B, X, convert_in(.(Y, XS), B, X))
convert_in(.(0, XS), B, X) → U1(XS, B, X, convert_in(XS, B, Y))
convert_in([], B, 0) → convert_out([], B, 0)
U1(XS, B, X, convert_out(XS, B, Y)) → U2(XS, B, X, times_in(Y, B, X))
times_in(s(X), Y, Z) → U5(X, Y, Z, times_in(X, Y, U))
times_in(0, Y, 0) → times_out(0, Y, 0)
U5(X, Y, Z, times_out(X, Y, U)) → U6(X, Y, Z, plus_in(Y, U, Z))
plus_in(s(X), Y, s(Z)) → U4(X, Y, Z, plus_in(X, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U4(X, Y, Z, plus_out(X, Y, Z)) → plus_out(s(X), Y, s(Z))
U6(X, Y, Z, plus_out(Y, U, Z)) → times_out(s(X), Y, Z)
U2(XS, B, X, times_out(Y, B, X)) → convert_out(.(0, XS), B, X)
U3(Y, XS, B, X, convert_out(.(Y, XS), B, X)) → convert_out(.(s(Y), XS), B, s(X))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
PLUS_IN(s(X), Y, s(Z)) → PLUS_IN(X, Y, Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
PLUS_IN(s(X), Y) → PLUS_IN(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
TIMES_IN(s(X), Y, Z) → TIMES_IN(X, Y, U)
convert_in(.(s(Y), XS), B, s(X)) → U3(Y, XS, B, X, convert_in(.(Y, XS), B, X))
convert_in(.(0, XS), B, X) → U1(XS, B, X, convert_in(XS, B, Y))
convert_in([], B, 0) → convert_out([], B, 0)
U1(XS, B, X, convert_out(XS, B, Y)) → U2(XS, B, X, times_in(Y, B, X))
times_in(s(X), Y, Z) → U5(X, Y, Z, times_in(X, Y, U))
times_in(0, Y, 0) → times_out(0, Y, 0)
U5(X, Y, Z, times_out(X, Y, U)) → U6(X, Y, Z, plus_in(Y, U, Z))
plus_in(s(X), Y, s(Z)) → U4(X, Y, Z, plus_in(X, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U4(X, Y, Z, plus_out(X, Y, Z)) → plus_out(s(X), Y, s(Z))
U6(X, Y, Z, plus_out(Y, U, Z)) → times_out(s(X), Y, Z)
U2(XS, B, X, times_out(Y, B, X)) → convert_out(.(0, XS), B, X)
U3(Y, XS, B, X, convert_out(.(Y, XS), B, X)) → convert_out(.(s(Y), XS), B, s(X))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
TIMES_IN(s(X), Y, Z) → TIMES_IN(X, Y, U)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
TIMES_IN(s(X), Y) → TIMES_IN(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
CONVERT_IN(.(s(Y), XS), B, s(X)) → CONVERT_IN(.(Y, XS), B, X)
CONVERT_IN(.(0, XS), B, X) → CONVERT_IN(XS, B, Y)
convert_in(.(s(Y), XS), B, s(X)) → U3(Y, XS, B, X, convert_in(.(Y, XS), B, X))
convert_in(.(0, XS), B, X) → U1(XS, B, X, convert_in(XS, B, Y))
convert_in([], B, 0) → convert_out([], B, 0)
U1(XS, B, X, convert_out(XS, B, Y)) → U2(XS, B, X, times_in(Y, B, X))
times_in(s(X), Y, Z) → U5(X, Y, Z, times_in(X, Y, U))
times_in(0, Y, 0) → times_out(0, Y, 0)
U5(X, Y, Z, times_out(X, Y, U)) → U6(X, Y, Z, plus_in(Y, U, Z))
plus_in(s(X), Y, s(Z)) → U4(X, Y, Z, plus_in(X, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U4(X, Y, Z, plus_out(X, Y, Z)) → plus_out(s(X), Y, s(Z))
U6(X, Y, Z, plus_out(Y, U, Z)) → times_out(s(X), Y, Z)
U2(XS, B, X, times_out(Y, B, X)) → convert_out(.(0, XS), B, X)
U3(Y, XS, B, X, convert_out(.(Y, XS), B, X)) → convert_out(.(s(Y), XS), B, s(X))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
CONVERT_IN(.(s(Y), XS), B, s(X)) → CONVERT_IN(.(Y, XS), B, X)
CONVERT_IN(.(0, XS), B, X) → CONVERT_IN(XS, B, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
CONVERT_IN(.(s(Y), XS), B) → CONVERT_IN(.(Y, XS), B)
CONVERT_IN(.(0, XS), B) → CONVERT_IN(XS, B)
No rules are removed from R.
CONVERT_IN(.(s(Y), XS), B) → CONVERT_IN(.(Y, XS), B)
CONVERT_IN(.(0, XS), B) → CONVERT_IN(XS, B)
POL(.(x1, x2)) = 2·x1 + 2·x2
POL(0) = 0
POL(CONVERT_IN(x1, x2)) = 2·x1 + x2
POL(s(x1)) = 2·x1
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof